Statistical ranking and combinatorial Hodge theory
نویسندگان
چکیده
We propose a number of techniques for obtaining a global ranking from data that may be incomplete and imbalanced — characteristics that are almost universal to modern datasets coming from e-commerce and internet applications. We are primarily interested in cardinal data based on scores or ratings though our methods also give specific insights on ordinal data. From raw ranking data, we construct pairwise rankings, represented as edge flows on an appropriate graph. Our statistical ranking method exploits the graph Helmholtzian, which is the graph theoretic analogue of the Helmholtz operator or vector Laplacian, in much the same way the graph Laplacian is an analogue of the Laplace operator or scalar Laplacian. We shall study the graph Helmholtzian using combinatorial Hodge theory, which provides a way to unravel ranking information from edge flows. In particular, we show that every edge flow representing pairwise ranking can be resolved into two orthogonal components, a gradient flow that represents the l2-optimal global ranking and a divergence-free flow (cyclic) that measures the validity of the
منابع مشابه
Learning to rank with combinatorial Hodge theory
We propose a number of techniques for learning a global ranking from data that may be incomplete and imbalanced — characteristics that are almost universal to modern datasets coming from e-commerce and internet applications. We are primarily interested in cardinal data based on scores or ratings though our methods also give specific insights on ordinal data. From raw ranking data, we construct ...
متن کاملRobust Statistical Ranking: Theory and Algorithms
Deeply rooted in classical social choice and voting theory, statistical ranking with paired comparison data experienced its renaissance with the wide spread of crowdsourcing technique. As the data quality might be significantly damaged in an uncontrolled crowdsourcing environment, outlier detection and robust ranking have become a hot topic in such data analysis. In this paper, we propose a rob...
متن کاملCombinatorics of binomial decompositions of the simplest Hodge integrals
We reduce the calculation of the simplest Hodge integrals to some sums over decorated trees. Since Hodge integrals are already calculated, this gives a proof of a rather interesting combinatorial theorem and a new representation of Bernoulli numbers.
متن کاملHodge Theory for Combinatorial Geometries
The matroid is called loopless if the empty subset of E is closed, and is called a combinatorial geometry if in addition all single element subsets of E are closed. A closed subset of E is called a flat of M, and every subset of E has a well-defined rank and corank in the poset of all flats of M. The notion of matroid played a fundamental role in graph theory, coding theory, combinatorial optim...
متن کاملImproving Object Based Ranking of User Comments from Social Web using Hodge Decomposition
The user shares their thoughts on social web sites often through posts and comments. Users register to communities using their personal information. The social web sites like Yahoo, YouTube, Facebook and Twitter provides a large volume of general information of users interest. The popularity of social websites is increasing very fast because of the large scale of user participation, through con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 127 شماره
صفحات -
تاریخ انتشار 2011